Quantum Unique Ergodicity for Locally Symmetric Spaces Ii
نویسنده
چکیده
We prove the arithmetic quantum unique ergodicity (AQUE) conjecture for non-degenerate sequences of Hecke eigenfunctions on quotients Γ\G/K, where G ' PGLd(R), K is a maximal compact subgroup of G and Γ < G is a lattice associated to a division algebra over Q of prime degree d. The primary novelty of the present paper is a new method of proving positive entropy of quantum limits, which avoids sieves and yields better bounds than previous techniques. The result on AQUE is obtained by combining this with a measure-rigidity theorem due to Einsiedler-Katok, following a strategy first pioneered by Lindenstrauss.
منابع مشابه
On Quantum Unique Ergodicity for Locally Symmetric Spaces I
We construct an equivariant microlocal lift for locally symmetric spaces. In other words, we demonstrate how to lift, in a “semicanonical” fashion, limits of eigenfunction measures on locally symmetric spaces to Cartan-invariant measures on an appropriate bundle. The construction uses elementary features of the representation theory of semisimple real Lie groups, and can be considered a general...
متن کاملOn Quantum Unique Ergodicity for Locally Symmetric Spaces I Lior Silberman and Akshay Venkatesh
We construct an equivariant microlocal lift for locally symmetric spaces. In other words, we demonstrate how to lift, in a “semicanonical” fashion, limits of eigenfunction measures on locally symmetric spaces to Cartan-invariant measures on an appropriate bundle. The construction uses elementary features of the representation theory of semisimple real Lie groups, and can be considered a general...
متن کاملGeneralized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملArithmetic Quantum Chaos on Locally Symmetric Spaces Lior Silberman a Dissertation Presented to the Faculty of Princeton University in Candidacy for the Degree of Doctor of Philosophy Recommended for Acceptance by the Department of Mathematics
We report progress on the equidistribution problem of automorphic forms on locally symmetric spaces. First, generalizing work of Zelditch-Wolpert we construct a representation theoretic analog of the micro-local lift, showing that (under a technical condition of non-degeneracy) every weak-* limit of the generalized Wigner measures associated to a sequence of Maass forms with divergent spectral ...
متن کاملInvariant Measures and Arithmetic Quantum Unique Ergodicity
We classify measures on the locally homogeneous space Γ\SL(2,R)×L which are invariant and have positive entropy under the diagonal subgroup of SL(2,R) and recurrent under L. This classification can be used to show arithmetic quantum unique ergodicity for compact arithmetic surfaces, and a similar but slightly weaker result for the finite volume case. Other applications are also presented. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006